综合图区亚洲网友自拍|亚洲黄色网络|成人无码网WWW在线观看,日本高清视频色视频kk266,激情综合五月天,欧美一区日韩一区中文字幕页

                                English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個(gè)人登錄 | 郵件訂閱
                                當(dāng)前位置 > 首頁 > 技術(shù)文章 > 腫瘤純度和倍性評(píng)估工具Sequenza的安裝和使用方法

                                腫瘤純度和倍性評(píng)估工具Sequenza的安裝和使用方法

                                瀏覽次數(shù):1521 發(fā)布日期:2024-5-13  來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)

                                腫瘤樣本中癌細(xì)胞總是混合一定未知比例的正常細(xì)胞,我們稱腫瘤樣本中癌細(xì)胞所占的比例為腫瘤純度(Tumor purity),稱由染色體結(jié)構(gòu)和數(shù)目異常導(dǎo)致的腫瘤樣本中癌細(xì)胞的真正含量為倍性(Tumor ploidy)。估計(jì)腫瘤的純度和倍性有利于癌癥基因組進(jìn)化和腫瘤內(nèi)的異質(zhì)性研究。

                                Sequenza是一個(gè)使用配對(duì)的腫瘤/正常樣本DNA測(cè)序數(shù)據(jù)來估計(jì)腫瘤樣本純度和倍性的軟件,同時(shí)還檢測(cè)腫瘤樣本拷貝數(shù)變異。本期小編詳細(xì)給大家介紹該軟件的安裝及使用。

                                1 軟件安裝   

                                首先是軟件安裝,該軟件依賴python包sequenza-utils和R包sequenza,分別安裝這兩個(gè)包,有很多小伙伴在安裝軟件的過程中總會(huì)遇到各種版本問題,建議使用conda虛擬環(huán)境安裝,首先在虛擬環(huán)境中安裝python和R:

                                # 創(chuàng)建虛擬環(huán)境Sequenza,并安裝python

                                conda create -n Sequenza python=3.8

                                # 為虛擬環(huán)境安裝R

                                conda install -n Sequenza r=3.6.3

                                # 進(jìn)入虛擬環(huán)境Sequenza

                                conda activate Sequenza

                                然后就是在虛擬環(huán)境中進(jìn)行python和R包安裝,跟在linux環(huán)境下安裝一樣。

                                1.1.sequenza-utils安裝(python包)

                                sequenza-utils包安裝比較容易,以下有兩種安裝方式:

                                官方說明:https://sequenza-utils.readthedocs.io/en/latest/

                                # 安裝方法1(推薦)

                                pip install sequenza-utils

                                # 安裝方法2

                                git clone https://bitbucket.org/sequenza_tools/sequenza-utils

                                cd sequenza-utils

                                python setup.py test

                                python setup.py install

                                # 安裝成功后,查看幫助

                                sequenza-utils -h

                                1.2.sequenza安裝(R包)

                                # 安裝sequenza包前,需要先安裝copynumber包

                                install.packages("BiocManager")

                                library(BiocManager)

                                BiocManager::install("copynumber")

                                # 或者使用conda安裝(推薦)

                                conda install -c bioconda bioconductor-copynumber

                                # 安裝sequenza包

                                install.packages("sequenza")

                                # 安裝成功后,查看幫助

                                library(sequenza)

                                library(help="sequenza")

                                2 使用方法   

                                Python和R包安裝成功后,就可以進(jìn)行腫瘤純度和倍性評(píng)估,我們使用處理后的腫瘤配對(duì)樣本BAM文件、參考基因組ref文件作為輸入,BAM文件通過基因組比對(duì)流程得到(如GATK標(biāo)準(zhǔn)流程),參考基因組文件可以通過UCSC下載(hg19/hg38)。

                                2.1. 基于python的預(yù)處理sequenza-utils

                                # 制作參考基因組GC標(biāo)準(zhǔn)化文件,通過-w參數(shù)分割基因組文件,設(shè)置越小檢測(cè)敏感性越高。

                                sequenza-utils gc_wiggle -f $ref -w 50 -o - | gzip > hg19.gc50Base.txt.gz

                                # 根據(jù)腫瘤樣本和對(duì)照樣本BAM文件統(tǒng)計(jì)GC標(biāo)準(zhǔn)文件每個(gè)堿基的深度和等位堿基頻率等。

                                sequenza-utils bam2seqz \

                                -gc $out/hg19.gc50Base.txt.gz \

                                -F $ref \

                                -n $normalbam \

                                -t $tumorbam | gzip >$out/$tumor/${tumor}.seqz.gz \

                                # 提取測(cè)序深度,確定正常標(biāo)本中的純合和雜合位置,并從腫瘤標(biāo)本中計(jì)算出變異等位基因和等位基因頻率。減小seqz文件的大小,提高模型運(yùn)行效率

                                sequenza-utils seqz_binning -w 50 \

                                -s $out/$tumor/${tumor}.seqz.gz | gzip >$out/$tumor/${tumor}_small.seqz.gz

                                2.2. 模型擬合及可視化工具sequenza

                                # 輸入文件(${tumor}_small.seqz.gz)預(yù)處理

                                (1)需要?jiǎng)h除chrM或非常規(guī)染色體數(shù)據(jù),否則會(huì)報(bào)錯(cuò)xlim有非限制值;

                                (2)為了提高評(píng)估準(zhǔn)確性,可以對(duì)數(shù)據(jù)進(jìn)行篩選,比如篩選DP > 10。

                                       這個(gè)處理步驟自行使用python或R編程,然后再壓縮,名字還是一樣。

                                # 導(dǎo)入預(yù)處理數(shù)據(jù),并對(duì)腫瘤進(jìn)行GC含量歸一化與正常深度之比,并使用“copynumber”軟件包進(jìn)行等位基因特異性分割。

                                test <- sequenza.extract(“${tumor}_small.seqz.gz”, verbose = FALSE)

                                # 推斷細(xì)胞性和倍性參數(shù)以及拷貝數(shù)分布圖,使用后驗(yàn)概率空間的局部最大值來提供替代解決方案

                                CP <- sequenza.fit(test)  

                                #計(jì)算純度和倍性,很耗時(shí)間

                                # 返回估計(jì)結(jié)果以及替代解決方案以及沿基因組和單個(gè)染色體的數(shù)據(jù)和模型的可視化

                                sequenza.results(sequenza.extract = test,

                                cp.table = CP,

                                sample.id = sample,

                                out.dir=sample)

                                3 結(jié)果說明

                                所有的結(jié)果文件說明如下:

                                img1

                                結(jié)果有很多,但是純度和倍性的相關(guān)結(jié)果其實(shí)就3個(gè)文件,如下:

                                img2

                                我們依次打開這三個(gè)文件,一起來看看結(jié)果長(zhǎng)啥樣:

                                (1)result_alternative_solutions.txt

                                img3

                                表1 腫瘤樣本純度和倍性評(píng)估結(jié)果

                                 

                                說明:Cellularity:腫瘤樣本純度 Ploidy:腫瘤樣本倍性 SLPP:對(duì)數(shù)后驗(yàn)概率

                                (2)result_CP_contours.pdf

                                img4

                                圖1 腫瘤樣本純度與模型結(jié)果

                                說明:橫坐標(biāo)為倍性值,縱坐標(biāo)為純度值,背景藍(lán)色表示最有可能的分布,白色表示最不可能的分布,其中紅色圈點(diǎn)為最優(yōu)值,即SLPP值最大,其它為次優(yōu)解(圖中“+”)

                                (3)result_model_fit.pdf

                                img5

                                圖2 腫瘤樣本倍性模型評(píng)估結(jié)果

                                說明:橫坐標(biāo)為B allele frequency,縱坐標(biāo)左側(cè)Depth ratio代表每個(gè)基因組片段腫瘤樣本與正常樣本測(cè)序深度比(低比值下估算的腫瘤樣本拷貝數(shù)不可信),縱坐標(biāo)右側(cè)copy number代表模型估算的拷貝數(shù)(黑色圓圈和點(diǎn)),背景顏色越紅表示越可信。

                                好了,以上就是使用基因組數(shù)據(jù)評(píng)估腫瘤樣本純度和倍性的過程。更多實(shí)用生信分析方法,小編將持續(xù)更新。

                                來源:上海生物芯片有限公司
                                聯(lián)系電話:400-100-2131
                                E-mail:marketing@shbiochip.com

                                用戶名: 密碼: 匿名 快速注冊(cè) 忘記密碼
                                評(píng)論只代表網(wǎng)友觀點(diǎn),不代表本站觀點(diǎn)。 請(qǐng)輸入驗(yàn)證碼: 8795
                                Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com