Doccol線拴是國際腦缺血研究中應用最多的線拴,也是Nature,Stroke,J Neurosci 等頂級雜志報道最多的線拴。根據谷歌學術的搜索結果,截止至2018年9月,已經有數千篇研究腦缺血的文獻引用了Doccol線栓。僅2018年1月至9月就有158篇,文獻目錄見我們的網站http://minxuetech.com。Doccol線拴成本最低僅為10-20元/鼠(可重復使用型號,視重復使用次數決定)。我們是Doccol線拴的中國唯一總代理,我們推薦使用下表的型號,下列推薦型號都備有現貨(除404356PK5Re)。 請與我們聯系:天津敏學科技有限公司http://minxuetech.com;Tel:15202275172;Email:minxuetech@163.com。
種屬 |
體重(g) |
推薦型號(可重復用) |
線號 |
外徑(mm) |
包被(mm) |
小鼠 |
15-20 |
701934PK5Re或701956PK5Re |
7-0 |
0.19 |
3-4或5-6 |
20-25 |
602156PK5Re或602256PK5Re |
6-0 |
0.21或0.22 |
5-6 |
25-30 |
602256PK5Re或602356PK5Re |
6-0 |
0.22或0.23 |
5-6 |
30-35 |
602356PK5Re |
6-0 |
0.23 |
5-6 |
大鼠 |
<200 |
503356PK5Re |
5-0 |
0.33 |
5-6 |
200-250 |
403556PK5Re |
4-0 |
0.35 |
5-6 |
250-280 |
403756PK5Re |
4-0 |
0.37 |
5-6 |
280-330 |
403956PK5Re |
4-0 |
0.39 |
5-6 |
330-400 |
404156PK5Re |
4-0 |
0.41 |
5-6 |
>400 |
404356PK5Re |
4-0 |
0.43 |
5-6 |
注:(1)型號的命名根據線號、外徑、硅膠包被長度、一個包裝中的線拴數量、是否可重復使用確定。如“701956PK5Re”為7號線,0.19mm外徑,硅膠包被長度5-6mm,PK5一個包裝中的數量是5根,Re可重復使用。(2)在美國,絕大多數的實驗者都選用上表推薦的可重復使用型號,即所謂“starter kits”。Doccol線栓所有型號列表及選擇原則見http://minxuetech.com。(3)Re型號重復使用的次數,每位實驗者差別很大,2-10次不等。
Doccol MCAO線拴可以將腦梗塞體積標準差減少至5%
成功的MCAO模型的腦血流在插入線拴時會有斷崖式下降;在拔出線拴后,激光多普勒檢測的血流會很快恢復(圖A)。采用硬質尼龍魚線線拴,極易戳破血管,造成蛛網膜下腔出血(Subarachnoid hemorrhage,圖B)。手術過程中血管如果被線拴戳破,腦血流不會有斷崖式下降,而是緩慢下降;在拔出線拴后,腦血流也不會恢復。造成腦梗塞體積變異的原因還有,不完全的梗塞血管或線拴移位造成的血流下降程度不均一及提前灌注。因此,線栓的質地是MCAO模型穩(wěn)定的關鍵。
對于MCAO模型來說,主要有兩種線拴,無包被的火焰熔燙圓頭線拴及硅膠包被線拴。研究表明(Tsuchiya et al. 2003),無包被的圓頭線拴在 MCAO實驗過程中可能導致高達40%的蛛網膜下腔出血,而其標準差可能比平均值的50%還要大。另一項技術文章表明(Shimamura et al. 2006a),硅膠包被線拴要遠好于無包被的圓頭線拴,其結果更為穩(wěn)定,即使對于沒有經驗的實驗者來說也是如此。而多聚賴氨酸包被的線拴只能增加死亡率,不能減少梗賽體積的變異程度(Huang et al. 1998)。
Doccol MCAO線拴全部為硅膠包被,圓潤、柔軟、包被均勻,即使在沒有激光多普勒實時檢測的情況,也不會將血管戳破。使用自制的硅膠包被的線拴,大鼠(Schmid-Elsaesser et al. 1998)及小鼠(Shah et al. 2006)的腦梗塞體積的標準差均在30%左右。而使用Doccol MCAO線拴可以得到更好的結果。對于大鼠MCAO模型來說,使用Doccol MCAO線拴得到的結果的標準差可達10%-20% (Ruscher et al.2012;Ishizaka et al.2013;Sakata et al.2012;Candelario-Jalil et al. 2008;Khan et al. 2006;Liu et al. 2006;Shimamura et al. 2006b;Solaroglu et al. 2006;Tsubokawa et al. 2007;Tsubokawa et al. 2006a;Tsubokawa et al. 2006b)。對于小鼠來說,使用Doccol MCAO線拴得到的結果的標準差可達5%-10%(Chen et al.2014; Bae et al.2013; Jin et al.2011; Gu et al.2012; Kleinschnitz et al. 2007; Maysami et al. 2008; Pignataro et al. 2007b; Pignataro et al. 2007c)。
References
1. Bae ON, Serfozo K, Baek SH, et al. (2013) Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 44(1):205-12.
2. Candelario-Jalil E, Munoz E, Fiebich BL. (2008) Detrimental effects of tropisetron on permanent ischemic stroke in the rat. BMC Neurosci 9:19
3. Chen HZ, Guo S, Li ZZ, et al. (2014) A critical role for interferon regulatory factor 9 in cerebral ischemic stroke.J Neurosci.34(36):11897-912.
4. Huang J, Kim LJ, Poisik A, Pinsky DJ, Connolly ES, Jr. (1998) Does poly-L-lysine coating of the middle cerebral artery occlusion suture improve infarct consistency in a murine model? J Stroke Cerebrovasc Dis 7:296-301
5. Gu L, Xiong X, Zhang H, et al. (2012) Distinctive Effects of T Cell Subsets in Neuronal Injury Induced by Cocultured Splenocytes In Vitro and by In Vivo Stroke in Mice. Stroke 43:1941-1946.
6. Ishizaka S, Horie N, Satoh K, et al. (2013) Intra-arterial Cell Transplantation Provides Timing-Dependent Cell Distribution and Functional Recovery After Stroke. Stroke 44:720-726.
7. Jin R, Song Z, Yu S, et al. (2011) Phosphatidylinositol-3-kinase gamma plays a central role in blood-brain barrier dysfunction in acute experimental stroke.Stroke 42(7):2033-44.
8. Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I. (2006) Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 15:114-124
9. Kleinschnitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G. (2007) Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 115:2323-2330
10. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. (1986) Experimental studies of ischemic brain edema, I: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:1-8
11. Liu S, Liu W, Ding W, Miyake M, Rosenberg GA, Liu KJ. (2006) Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia. J Cereb Blood Flow Metab 26:1274-1284
12. Longa EZ, Weinstein PR, Carlson S, Cummins R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84-91
13. Maysami S, Lan JQ, Minami M, Simon RP. (2008) Proliferating progenitor cells: a required cellular element for induction of ischemic tolerance in the brain. J Cereb Blood Flow Metab 28:1104-1113
14. Pignataro G, Simon RP, Boison D. (2007a) Transgenic overexpression of adenosine kinase aggravates cell death in ischemia. J Cereb Blood Flow Metab 27:1-5
15. Pignataro G, Simon RP, Xiong ZG. (2007b) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain 130:151-158
16. Pignataro G, Studer FE, Wilz A, Simon RP, Boison D. (2007c) Neuroprotection in ischemic mouse brain induced by stem cell-derived brain implants. J Cereb Blood Flow Metab 27:919-927
17. Ruscher K, Kuric E, Wieloch T, et al. (2012) Levodopa Treatment Improves Functional Recovery After Experimental Stroke. Stroke 43:507-513.
18. Sakata H, et al. (2012) Minocycline-Preconditioned Neural Stem Cells Enhance Neuroprotection after Ischemic Stroke in Rats.
J Neurosci. 32(10):3462–3473.
19 Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ. (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29:2162-2170
20. Shah ZA, Namiranian K, Klaus J, Kibler K, Dore S. (2006) Use of an optimized transient occlusion of the middle cerebral artery protocol for the mouse stroke model. J Stroke Cerebrovasc Dis 15:133-138
21. Shimamura N, Matchett G, Tsubokawa T, Ohkuma H, Zhang J. (2006a) Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J Neurosci Methods 156:161-165
22. Shimamura N, Matchett G, Yatsushige H, Calvert JW, Ohkuma H, Zhang J. (2006b) Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke 37:1902-1909
23. Solaroglu I, Tsubokawa T, Cahill J, Zhang JH. (2006) Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience 143:965-974
24. Tsubokawa T, Jadhav V, Solaroglu I, Shiokawa Y, Konishi Y, Zhang JH. (2007) Lecithinized superoxide dismutase improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Stroke 38:1057-1062
25. Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K, Zhang JH. (2006a) Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke 37:1888-1894
26. Tsubokawa T, Yamaguchi-Okada M, Calvert JW, Solaroglu I, Shimamura N, Yata K, Zhang JH. (2006b) Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. J Neurosci Res 84:832-840
27. Tsuchiya D, Hong S, Kayama T, Panter SS, Weinstein PR. (2003) Effect of suture size and carotid clip application upon blood flow and infarct volume after permanent and temporary middle cerebral artery occlusion in mice. Brain Res 970:131-139