BK channel inactivation gates daytime excitability in the circadian clock Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K+ channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain’s intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal ‘ball-and-chain’ domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime ‘upstate’. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm. 失活是幾種電壓依賴性離子通道的內在特性,在膜去極化過程中關閉傳導通路,及動態(tài)調節(jié)神經元活動。BK K(+)通道通過β2亞基進行N型失活,但該失活在生理意義上尚不明確。在最近一篇于Nature Communication所發(fā)表的報告中,巴爾的摩馬里蘭大學的研究人員發(fā)現大腦的內部時鐘電路 - 視交叉上核 -于白天時中失活的BK電流占主導地位,減少穩(wěn)態(tài)電流水平。晚上失活減少,導致更大的BK電流。失去β2亞基消除失活,并消除了BK電流水平及SCN發(fā)射率的晝夜變化,也破壞了行為節(jié)律。通過β2亞基N-端的 “球和鏈” 域進行選擇性恢復失活,可拯救BK電流水平和發(fā)射率,卻意外地導致了膜的亞閾性質,該性質把SCN神經元轉變?yōu)榘滋鞛椤鄙稀钡臓顟B(tài)。研究人員揭示了該生物時鐘采用失活門作為一種生物物理開關設置,從而控制視交叉上核興奮性的晝夜變化并導致晝夜節(jié)律。 原文鏈接:http://www.nature.com/ncomms/2016/160304/ncomms10837/full/ncomms10837.html |