Nature Biotechnology
2009年2月封面文章:
基于安捷倫寡核苷酸序列合成技術(shù)的液相序列捕獲系統(tǒng) – 高通量平行靶向測(cè)序的最佳解決方案
來(lái)自美國(guó)麻省理工學(xué)院和哈佛大學(xué)Broad研究院的研究人員,利用安捷倫(Agilent Technologies)卓越的寡核苷酸序列合成技術(shù),合成大量生物素標(biāo)記的RNA“誘餌”用于靶向序列的捕獲,成功應(yīng)用于高通量平行靶向測(cè)序。這一重大科學(xué)進(jìn)展作為封面文章發(fā)表在最新一期的«自然•生物科技»雜志上。
下一代測(cè)序技術(shù)(Next Generation Sequencing)是對(duì)傳統(tǒng)測(cè)序技術(shù)的革命性變革,可以一次完成數(shù)十萬(wàn)到數(shù)百萬(wàn)條DNA分子的序列測(cè)定,使得在極短時(shí)間內(nèi)對(duì)人類轉(zhuǎn)錄組和基因組進(jìn)行細(xì)致研究成為可能。2003年,“人類基因組計(jì)劃”獲得首張人類全基因組圖譜,為了測(cè)定人類基因組的30億對(duì)堿基,數(shù)以千計(jì)的科學(xué)家們花費(fèi)了超過(guò)30億美元和13年的時(shí)間。盡管與傳統(tǒng)測(cè)序技術(shù)相比,下一代測(cè)序技術(shù)的成本大幅降低,但目前測(cè)序一套個(gè)人基因組圖譜的成本仍然高達(dá)數(shù)十萬(wàn)美元。所以,在現(xiàn)階段,如何實(shí)現(xiàn)對(duì)大批量樣本的高通量平行靶向測(cè)序,對(duì)許多科學(xué)和醫(yī)學(xué)研究課題具有重大意義。
為了實(shí)現(xiàn)這一目標(biāo),研究人員從生物芯片技術(shù)得到靈感,隨機(jī)選擇了1,900個(gè)人類基因,針對(duì)這些基因的15,565個(gè)編碼蛋白的外顯子序列(﹥2.5 Mb)以及另外4個(gè)基因組大片段序列(﹥1.7 Mb),根據(jù)tiling方法設(shè)計(jì)并且利用安捷倫的“SurePrint”技術(shù)合成了22,000條200-mers寡核苷酸探針。再經(jīng)PCR和反轉(zhuǎn)錄后得到足夠量的生物素標(biāo)記的RNA“誘餌”,巧妙建立RNA-DNA的液相雜交系統(tǒng),對(duì)全基因組DNA中的目的序列進(jìn)行成功捕獲,序列數(shù)據(jù)經(jīng)由Illumina公司的測(cè)序儀讀取。
測(cè)序結(jié)果表明:
1)極佳的特異性:高達(dá)90%的讀出序列來(lái)源于RNA“誘餌”捕獲,其中和靶向序列完全重合的超過(guò)50%;
2)優(yōu)秀的均一性:對(duì)基因組大片段序列,至少和捕獲序列重合一半以上的RNA“誘餌”超過(guò)80%,即使對(duì)小片段的外顯子序列,這一數(shù)字也超過(guò)60%;
3)卓越的重現(xiàn)性:2組技術(shù)重復(fù)試驗(yàn)間的差異率不到10-5;
4)可以精確地檢測(cè)SNP。綜上所述,實(shí)驗(yàn)結(jié)果完美驗(yàn)證了基于液相序列捕獲的高通量平行靶向測(cè)序技術(shù)的特異性,準(zhǔn)確性,重現(xiàn)性和廣泛的應(yīng)用前景。
原文摘要:
Nature Biotechnology. 2009 Feb;27(2):182-9. Epub 2009 Feb 1.
Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing
Andreas Gnirke1, Alexandre Melnikov1, Jared Maguire1, Peter Rogov1, Emily M LeProust2, William Brockman1,5, Timothy Fennell1, Georgia Giannoukos1, Sheila Fisher1, Carsten Russ1, Stacey Gabriel1, David B Jaffe1, Eric S Lander1,3,4 & Chad Nusbaum1
Targeting genomic loci by massively parallel sequencing requires new methods to enrich templates to be sequenced. We developed a capture method that uses biotinylated RNA ‘baits’ to fish targets out of a ‘pond’ of DNA fragments. The RNA is transcribed from PCR-amplified oligodeoxynucleotides originally synthesized on a microarray, generating sufficient bait for multiple captures at concentrations high enough to drive the hybridization. We tested this method with 170-mer baits that target 415,000 coding exons (2.5 Mb) and four regions (1.7 Mb total) using Illumina sequencing as read-out. About 90% of uniquely aligning bases fell on or near bait sequence; up to 50% lay on exons proper. The uniformity was such that B60% of target bases in the exonic ‘catch’, and B80% in the regional catch, had at least half the mean coverage. One lane of Illumina sequence was sufficient to call high-confidence genotypes for 89% of the targeted exon space.
1Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. 2Agilent Technologies Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, USA. 3Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. 4Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, USA. 5Present address: Google, Inc., 5 Cambridge Center, Cambridge, Massachusetts 02142, USA. Correspondence should be addressed to A.G. (gnirke@broad.mit.edu).