引言:
嵌合抗原受體T細(xì)胞療法(CAR-T)是近年來發(fā)展非常迅速的一種新型細(xì)胞免疫治療技術(shù),CAR-T免疫療法是通過給T細(xì)胞裝備能識(shí)別特定腫瘤細(xì)胞的分子,在識(shí)別腫瘤細(xì)胞后能引起T細(xì)胞的激活和增殖,從而可以有效殺傷腫瘤細(xì)胞。2017年,FDA批準(zhǔn)兩個(gè)CAR-T產(chǎn)品上市,一個(gè)是諾華的Kymriah(Tisagenlecleucel,CTL019),被批準(zhǔn)其用于治療3~25歲的兒童和年輕成人急性淋巴細(xì)胞白血病(ALL),開啟了惡性血液腫瘤免疫治療的新篇章。另一個(gè)獲批的是Kite Pharma 的Yescarta (Axicabtagene Ciloleucel,KTE-C19),用于治療成人復(fù)發(fā)或難治性大B細(xì)胞淋巴瘤,這是第一個(gè)用于治療非霍奇金淋巴瘤的CAR-T產(chǎn)品。由于Kymriah 和Yescarta 的受試者中有部分出現(xiàn)了嚴(yán)重的細(xì)胞因子釋放綜合征(CRS)及神經(jīng)毒性,嚴(yán)重時(shí)可危及生命。因此,正確有效地對(duì)CRS進(jìn)行管理和干預(yù),降低CAR-T治療過程中不良事件發(fā)生率是臨床上亟須解決的問題。本文將就CAR-T發(fā)展、CAR-T在實(shí)體瘤中的應(yīng)用、CAR-T面臨的挑戰(zhàn)以及未來發(fā)展方向做一闡述。
|
1.CAR-T細(xì)胞療法的原理及發(fā)展 T細(xì)胞的活化主要通過雙信號(hào)通路完成。第一信號(hào)是抗原特異性信號(hào),由T細(xì)胞表面受體(TCR)與抗原肽-主要組織相容性復(fù)合物(MHC)的特異性結(jié)合構(gòu)成;第二信號(hào)是抗原非特異性信號(hào),它由T細(xì)胞與抗原遞呈細(xì)胞(APC)表面的共刺激分子(CM)相互作用來介導(dǎo)。這兩種信號(hào)的共同參與了T細(xì)胞的活化,誘導(dǎo)T細(xì)胞產(chǎn)生級(jí)聯(lián)反應(yīng),最終使T細(xì)胞可以活化為細(xì)胞毒性T淋巴細(xì)胞(CTL)。當(dāng)CTL與患者體內(nèi)含有相同抗原肽-MHC分子復(fù)合物的腫瘤細(xì)胞相遇后,二者特異性結(jié)合,刺激CTL產(chǎn)生釋放裂解腫瘤細(xì)胞的穿孔素、顆粒酶,直接殺死腫瘤細(xì)胞;或者釋放細(xì)胞因子,改變腫瘤細(xì)胞生存環(huán)境,抑制腫瘤細(xì)胞的生長,也可通過CTL表面表達(dá)的FasL與腫瘤細(xì)胞表面的Fas結(jié)合,誘導(dǎo)腫瘤細(xì)胞凋亡[1]。然而,腫瘤患者體內(nèi)的T細(xì)胞在腫瘤微環(huán)境的影響下,T細(xì)胞活化受阻,或者T細(xì)胞不能識(shí)別腫瘤細(xì)胞的抗原肽,這就導(dǎo)致了T細(xì)胞殺傷作用不足以清除腫瘤細(xì)胞,因此通過在體外改造T細(xì)胞,使其成為能識(shí)別并殺傷腫瘤的細(xì)胞,這一想法即是CAR-T的來源。
圖1:T細(xì)胞活化雙信號(hào) CAR-T細(xì)胞療法治療的原理是通過基因工程技術(shù)將識(shí)別腫瘤相關(guān)抗原(Tumor associated antigen,TAA) 的抗體可變區(qū)基因序列與胞內(nèi)信號(hào)區(qū)序列在體外進(jìn)行重組(形成CAR),再通過病毒轉(zhuǎn)染方式將編碼CAR基因的重組質(zhì)粒在體外轉(zhuǎn)進(jìn)已分離出的患者T淋巴細(xì)胞中,使T細(xì)胞表面表達(dá)能識(shí)別腫瘤抗原的受體蛋白,經(jīng)體外大規(guī)模培養(yǎng)擴(kuò)增后表達(dá)特異性嵌合抗原受體的T細(xì)胞稱為CAR-T細(xì)胞[2]。由于治療使用的T細(xì)胞來源于患者的外周血細(xì)胞,整個(gè)治療過程沒有免疫排斥反應(yīng)。當(dāng)大量CAR-T細(xì)胞回輸?shù)交颊唧w內(nèi)后,CAR能特異性地識(shí)別靶向腫瘤細(xì)胞的抗原,活化后的T細(xì)胞可以殺傷腫瘤細(xì)胞,從而達(dá)到治療腫瘤的目的。 根據(jù)CAR的胞內(nèi)結(jié)構(gòu)域,對(duì)CAR的設(shè)計(jì)研究已經(jīng)進(jìn)行到了第五代[3]。初代CAR設(shè)計(jì)相對(duì)簡單,由單鏈抗體通過跨膜區(qū)域與細(xì)胞內(nèi)信號(hào)傳導(dǎo)區(qū)免疫受體酪氨酸激活基序(ITAM,Immunoreceptor tyrosine-based activation motif)相連,ITAM通 常為CD3ζ或FcεRIγ,第一代CAR設(shè)計(jì)的信號(hào)域是單一的信號(hào)分子,而腫瘤細(xì)胞表面共刺激分子表達(dá)減弱或者缺失,因此CAR修飾的T細(xì)胞缺乏共刺激-第二信號(hào)的支持,T細(xì)胞激活后很快由于信號(hào)限制而喪失作用,這使得第一代CAR-T細(xì)胞在患者體內(nèi)抗腫瘤效果有限[4]。作為改進(jìn),二代CAR在前一代的基礎(chǔ)上引入了一個(gè)共刺激分子(如CD28,4-1BB,OX40等),用來激活第二信號(hào),提供雙重活化信號(hào)從而加強(qiáng)CAR-T細(xì)胞對(duì)腫瘤細(xì)胞的殺傷毒性,這明顯的改善了第一代CAR對(duì)T細(xì)胞激活不充分的缺點(diǎn)[5, 6];三代CAR則在二代的基礎(chǔ)上引入多個(gè)共刺激分子(如CD28、CD137、OX40等),多種共刺激分子相互組合可以增強(qiáng)T細(xì)胞內(nèi)的JNK、NK-kB等信號(hào)通路,使得T細(xì)胞表現(xiàn)出更強(qiáng)更持久的作用活性,這對(duì)增加T細(xì)胞的抗腫瘤活性、延長T細(xì)胞的增殖能力、生存周期及促進(jìn)細(xì)胞因子(如IL-2、IFN-γ、TNF-α等)的分泌等方面均有顯著的提升。但臨床上第三代CAR研究較少,且三代CAR會(huì)造成T細(xì)胞刺激閾值降低,可能引起活化信號(hào)的泄露,從而誘發(fā)細(xì)胞因子釋放過量,因此具體作用是否比二代CAR效果好還需要進(jìn)一步研究[7]。四代CAR屬于新型研究,相比三代CAR其整合了一個(gè)活化T細(xì)胞核因子轉(zhuǎn)錄相應(yīng)元件,它可以使CAR-T細(xì)胞在腫瘤區(qū)域分泌特定的細(xì)胞因子(例如IL-12),從而可以提高了T細(xì)胞在腫瘤微環(huán)境中的存活率,招募并活化其它免疫細(xì)胞進(jìn)入腫瘤微環(huán)境中進(jìn)行免疫應(yīng)答[8]。五代CAR-T就是通用型CAR-T,它以基因編輯技術(shù)為基礎(chǔ),設(shè)計(jì)可以阻止人體發(fā)生排異反應(yīng)的基因,并且可以進(jìn)行異體T細(xì)胞的提前制備,隨時(shí)提供給患者。但就臨床應(yīng)用來看,第二代CAR-T細(xì)胞療法仍為主流。圖2為CAR發(fā)展歷程圖。 圖2:CAR的發(fā)展歷程
2.CAR-T在實(shí)體瘤中的應(yīng)用 3.CAR-T 細(xì)胞療法面臨的挑戰(zhàn) ● 細(xì)胞因子釋放綜合征(CRS) ● 脫靶效應(yīng) ● 神經(jīng)系統(tǒng)毒性 ● 插入突變 圖3:CAR-T生產(chǎn)過程
1)CAR-T活化:CD3和CD28激發(fā)型抗體 2)CAR-T擴(kuò)增:無動(dòng)物成分重組細(xì)胞因子 3)CAR-T鑒定:預(yù)包被的ELISA試劑盒 參考文獻(xiàn) 1. Goker, H., et al., Chimeric antigen receptor T cell treatment in hematologic malignancies. Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis, 2016. 54(1): p. 35-40.
2. Lee, D.W., et al., T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, 2015. 385(9967): p. 517-528.
3. Anurathapan, U., et al., Kinetics of tumor destruction by chimeric antigen receptor-modified T cells. Molecular therapy : the journal of the American Society of Gene Therapy, 2014. 22(3): p. 623-633.
4. Gross, G., T. Waks, and Z. Eshhar, Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(24): p. 10024-8.
5. Brentjens, R.J., et al., CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med, 2013. 5(177): p. 177ra38.
6. Brentjens, R.J., et al., Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011. 118(18): p. 4817-28.
7. Carpenito, C., et al., Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(9): p. 3360-5.
8. Zhao, Z., et al., Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer cell, 2015. 28(4): p. 415-428.
9. Beatty, G.L., et al., Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res, 2014. 2(2): p. 112-20.
10. Tong, Z.J., et al., Expression and prognostic value of HER-2/neu in primary breast cancer with sentinel lymph node metastasis. Bioscience reports, 2017. 37(4).
11. Kanagawa, N., et al., Tumor vessel-injuring ability improves antitumor effect of cytotoxic T lymphocytes in adoptive immunotherapy. Cancer gene therapy, 2013. 20(1): p. 57-64.
12. Chinnasamy, D., et al., Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. The Journal of clinical investigation, 2010. 120(11): p. 3953-68.
13. Tasian, S.K. and R.A. Gardner, CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther Adv Hematol, 2015. 6(5): p. 228-41.
14. Kochenderfer, J.N., et al., B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 2012. 119(12): p. 2709-20.
15. Maude, S.L., et al., Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England journal of medicine, 2014. 371(16): p. 1507-17.
16. Di Stasi, A., et al., Inducible apoptosis as a safety switch for adoptive cell therapy. The New England journal of medicine, 2011. 365(18): p. 1673-83.
17. Davila, M.L., et al., Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med, 2014. 6(224): p. 224ra25.
18. Turtle, C.J., et al., CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. The Journal of clinical investigation, 2016. 126(6): p. 2123-38.
19. Barrett, D.M., et al., Treatment of advanced leukemia in mice with mRNA engineered T cells. Human gene therapy, 2011. 22(12): p. 1575-86.
|