综合图区亚洲网友自拍|亚洲黄色网络|成人无码网WWW在线观看,日本高清视频色视频kk266,激情综合五月天,欧美一区日韩一区中文字幕页

                                                              English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個人登錄 | 郵件訂閱
                                                              當(dāng)前位置 > 首頁 > 技術(shù)文章 > 種子質(zhì)量與安全檢驗的高光譜成像研究進(jìn)展

                                                              種子質(zhì)量與安全檢驗的高光譜成像研究進(jìn)展

                                                              瀏覽次數(shù):4113 發(fā)布日期:2019-8-20  來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)

                                                              種子質(zhì)量是植物育種和生產(chǎn)中的一個基礎(chǔ)性和關(guān)鍵性因素,可以通過種子的發(fā)芽率或理化特性來衡量,在農(nóng)業(yè)領(lǐng)域已變得越來越重要。一方面,優(yōu)質(zhì)種子是植物生長的良好開端,預(yù)示著豐收;另一方面,種子質(zhì)量通常與食品質(zhì)量密切相關(guān),如質(zhì)地、風(fēng)味和營養(yǎng)成分。為了滿足消費者的需求,種子在收獲后應(yīng)謹(jǐn)慎加工和儲存。在采收、加工和儲存過程中,需要一種快速、準(zhǔn)確、無損的檢測種子質(zhì)量的方法。高光譜成像作為一種非破壞性、快速的種子質(zhì)量和安全性評價方法,近年來備受關(guān)注。

                                                              高光譜成像技術(shù)結(jié)合了光譜技術(shù)和成像技術(shù)的優(yōu)點,可以同時獲取光譜和空間信息。也就是說,它可以同時獲得不均勻樣品的化學(xué)信息和化學(xué)成分的空間分布。高光譜技術(shù)在農(nóng)業(yè)、食品、醫(yī)藥等行業(yè)得到了廣泛的應(yīng)用。高光譜成像技術(shù)在種子行業(yè)的潛在或?qū)嶋H應(yīng)用包括種子活性、活力、缺陷、疾病、凈度檢測,種子成分測定。

                                                              本文總結(jié)和分析了高光譜技術(shù)在種子質(zhì)量和安全檢驗方面的發(fā)展,介紹了該技術(shù)在種子分類分級、活性和活力檢測、損傷(缺陷和真菌)檢測、凈度檢測和種子成分測定等方面的能力,綜述了該技術(shù)在種子質(zhì)量檢測和安全檢測中的應(yīng)用,包括分析的光譜范圍、樣品種類、樣品狀態(tài)、樣品數(shù)量、特征(光譜特征、圖像特征、特征提取方法)、信號模式等。

                                                              表1高光譜成像應(yīng)用于種子分類和分級的參考文獻(xiàn)摘要

                                                              Seed

                                                              Varieties

                                                              Features

                                                              Data analysis strategies

                                                              Main application type

                                                              Classification result (highest accuracy)

                                                              Spectra/image

                                                              Extraction/selection methods

                                                              Analysis level

                                                              Classification/regression methods

                                                              Barley, wheat and sorghum

                                                              1 variety of each kind of grain

                                                              Spectra

                                                              PCA

                                                              PWbprediction map and OWc(single kernels)

                                                              Grain topography classification

                                                              Black bean

                                                              3

                                                              Spectra and image

                                                              SPA, PCA, GLCM

                                                              OW (single kernels)

                                                              PLS-DA, SVM

                                                              Variety classification

                                                              98.33% (PLS-DA)

                                                              Grape seed

                                                              3 varieties, two growth soil

                                                              Spectra

                                                              PCA

                                                              OW (single kernels), PW PCA and  prediction map

                                                              GDA

                                                              Assess Stage of maturation of grape seeds

                                                              > 95%

                                                              Grape seed

                                                              3

                                                              Spectra and image

                                                              PCA

                                                              OW (single kernels)

                                                              SVM

                                                              Variety classification

                                                              94.30%

                                                              Maize

                                                              2 (transgenic and non-transgenic)

                                                              Spectra

                                                              PCA, CARS

                                                              PW PCA and prediction map, OW (single  kernels)

                                                              PLS-DA, SVM

                                                              Transgenic and non-transgenic  classification

                                                              99.5% (PLS-DA)

                                                              Maize

                                                              4 varieties, 3 crop years

                                                              Spectra

                                                              no

                                                              OW (single kernels)

                                                              LS-SVM

                                                              Variety classification

                                                              91.50%

                                                              Maize

                                                              4 varieties, 3 crop years

                                                              Spectra

                                                              no

                                                              OW (single kernels)

                                                              LS-SVM

                                                              Variety classification

                                                              94.80%

                                                              Maize

                                                              4 varieties, 3 crop years

                                                              Spectra

                                                              no

                                                              OW (single kernels)

                                                              LS-SVM

                                                              Variety classification

                                                              94.40%

                                                              Maize

                                                              17

                                                              Spectra and image

                                                              PCA, SPA, GLCM, MDS

                                                              OW (single kernels)

                                                              LS-SVM

                                                              Variety classification

                                                              94.40%

                                                              Maize

                                                              18

                                                              Spectra and image

                                                              PCA

                                                              OW (single kernels), PW PCA and  prediction map

                                                              PLS-DA

                                                              Textural, vitreous, floury and the third  type endosperm

                                                              85% (PLS-DA)

                                                              Maize

                                                              3 hardness

                                                              Spectra and image

                                                              PCA

                                                              PW PCA and prediction map, OW (single  kernels)

                                                              PLS-DA

                                                              Hardness classification

                                                              97% (PLS-DA)

                                                              Maize

                                                              14

                                                              Spectra

                                                              joint skewness-based wavelength selection

                                                              OW (single kernels)

                                                              LS-SVM

                                                              Variety classification

                                                              98.18%

                                                              Maize

                                                              3

                                                              Spectra and image

                                                              PCA

                                                              OW (single kernels)

                                                              SVM, RBFNN

                                                              Variety classification

                                                              93.85% (RBFNN)

                                                              Maize

                                                              6

                                                              Spectra and image

                                                              PCA, KPCA, GLCM

                                                              OW (bulk samples)

                                                              LS-SVM, BPNN, PCA, KPCs

                                                              Classes classification

                                                              98.89% (PCA-GLCM-LS-SVM)

                                                              Rice

                                                              4 origins

                                                              Spectra and image

                                                              PCA, GLCM

                                                              OW (single kernels)

                                                              SVM

                                                              Variety classification

                                                              91.67%

                                                              Rice

                                                              4

                                                              Spectra

                                                              PLS-DA, PCA

                                                              PW PCA and OW (bulk samples)

                                                              KNN, PLS-DA, SIMCA, SVM, RF

                                                              Seed cultivars classification

                                                              100% (SIMCA, SVM, and RF)

                                                              Soybean, maize and rice

                                                              3 of each kind of seed

                                                              Spectra

                                                              neighborhood mutual information

                                                              OW (single kernels)

                                                              ELM, RF

                                                              Variety classification

                                                              100% (ELM)

                                                              Waxy corn

                                                              4

                                                              Spectra and image

                                                              SPA, GLCM

                                                              OW (single kernels)

                                                              PLS-DA, SVM

                                                              Variety classification

                                                              98.2% (SVM)

                                                              Wheat

                                                              8

                                                              Image

                                                              WT, STEPDISC, PCA

                                                              PW and OW (bulk samples)

                                                              BPNN, LDA, QDA

                                                              Classes classification

                                                              99.1% (LDA)

                                                              Wheat

                                                              8

                                                              Spectra

                                                              STEPDISC

                                                              OW (bulk samples)

                                                              LDA, QDA, Standard BPNN, Wardnet BPNN

                                                              Variety classification

                                                              94–100% (LDA)

                                                              Wheat

                                                              5

                                                              Spectra

                                                              STEPDISC

                                                              PW PCA and OW (bulk samples)

                                                              LDA, QDA

                                                              Classes classification

                                                              90–100% (LDA)

                                                              表2 高光譜成像應(yīng)用于種子活力和活力檢測的參考文獻(xiàn)摘要

                                                              Seed

                                                              Varieties

                                                              Features

                                                              Data analysis strategies

                                                              Main application type

                                                              Classification result (highest accuracy)

                                                              Spectra/image

                                                              Extraction/selection methods

                                                              Analysis level

                                                              Classification/regression methods

                                                              Barley

                                                              1 variety, 8 treatments

                                                              Spectra

                                                              PCA, MNF

                                                              PWbprediction map and OWc(single kernels)

                                                              Maximum likelihood multinomial,  regression classifier

                                                              Germination level detection

                                                              97% when single kernels grouped into the  three categories

                                                              Corn

                                                              3 varieties, 2 treatments

                                                              Spectra

                                                              No

                                                              OW (single kernels)

                                                              PLS-DA

                                                              Viability prediction

                                                              > 95.6%

                                                              Cryptomeria japonica and Chamaecyparis  obtuse

                                                              2 treatments of each kind of seed

                                                              Spectra

                                                              No

                                                              OW (single kernels)

                                                              Spectral index

                                                              Viability prediction

                                                              98.30%

                                                              Cucumber

                                                              1 variety, 2 treatments

                                                              Spectra

                                                              No

                                                              OW (single kernels), PW prediction map

                                                              PLS-DA

                                                              Viability prediction

                                                              100%

                                                              Muskmelon

                                                              1 variety, 4 treatments

                                                              Spectra

                                                              VIP, SR, and SMC

                                                              OW (single kernels)

                                                              PLS-DA

                                                              Viability prediction

                                                              94.60%

                                                              Norway spruce

                                                              1 variety, 3 treatments

                                                              Spectra and image

                                                              L1-regularized logistic regression based  feature selection

                                                              OW (single kernels)

                                                              SVM

                                                              Viability prediction

                                                              > 93%

                                                              Pepper

                                                              1 variety, 2 treatments

                                                              Spectra

                                                              No

                                                              OW (single kernels), PW prediction map

                                                              PLS-DA

                                                              Germination level detection

                                                              > 85%

                                                              Tree seeds

                                                              3 varieties, 8 treatments

                                                              Spectra

                                                              LDA

                                                              OW (single kernels)

                                                              LDA

                                                              Germination level detection

                                                              > 79%

                                                              Wheat, barley and sorghum

                                                              B: 3 varieties W: 3 varieties S: 2,  varieties 6 treatments

                                                              Spectra

                                                              PCA

                                                              OW (single kernels), PW prediction map

                                                              PLS-DA, PLSR

                                                              Viability prediction

                                                              R = 0.92 (PLS-DA)

                                                              表3 高光譜成像應(yīng)用于種子質(zhì)量缺陷檢測的參考文獻(xiàn)摘要

                                                              Seed

                                                              Varieties

                                                              Features

                                                              Data analysis strategies

                                                              Main application type

                                                              Classification result (highest accuracy)

                                                              Spectra/image

                                                              Extraction/selection methods

                                                              Analysis level

                                                              Classification/regression methods

                                                              Mung bean

                                                              1 variety, 8 treatments

                                                              Spectra and image

                                                              PCA

                                                              OWb(single kernels)

                                                              LDA, QDA

                                                              Insect damage detection

                                                              > 82%

                                                              Soybean

                                                              1 variety, 5 treatments

                                                              Spectra and image

                                                              GLCM

                                                              OW (single kernels)

                                                              LDA, QDA

                                                              Insect damage detection

                                                              99% (QDA)

                                                              Wheat

                                                              1 variety, 4 insect varieties

                                                              Spectra and image

                                                              STEPDISC, GLCM, GLRM, PCA

                                                              OW (single kernels)

                                                              LDA, QDA

                                                              Insect damage detection

                                                              95.3–99.3%

                                                              Wheat

                                                              1 variety, 3 treatments

                                                              Spectra and image

                                                              PCA

                                                              PWcprediction map and OW (single kernels)

                                                              Spectral index

                                                              Seed sprouted detection

                                                              > 90%

                                                              表4 高光譜成像應(yīng)用于種子真菌損傷檢測的參考文獻(xiàn)摘要

                                                              Seed

                                                              Varieties

                                                              Features

                                                              Data analysis strategies

                                                              Main application type

                                                              Classification result (highest accuracy)

                                                              Spectra/image

                                                              Extraction/selection methods

                                                              Analysis level

                                                              Classification/regression methods

                                                              Barley

                                                              1 variety, 2 fungi

                                                              Spectra and image

                                                              PCA

                                                              PWbprediction map and OWc(single kernels)

                                                              LDA, QDA, MDA

                                                              Fungus (Ochratoxin  A and Penicillium) damage detection

                                                              > 82%

                                                              Canola

                                                              1 variety, 2 fungi,

                                                              Spectra and image

                                                              PCA

                                                              OW (single kernels)

                                                              LDA, QDA, MDA

                                                              Fungus (Aspergillus  glaucus and Penicilliumspp.) damage detection

                                                              > 90%

                                                              Corn

                                                              3 varieties, 5 treatments

                                                              Spectra

                                                              No

                                                              OW (single kernels), PW prediction map

                                                              PLS-DA

                                                              Fungus (Aflatoxin B1) damage detection

                                                              96.90%

                                                              Corn

                                                              1 variety, 3 treatments

                                                              Spectra

                                                              No

                                                              PW spectra

                                                              spectral index

                                                              Fungus (Aflatoxin A. flavus) damage  detection

                                                              93%

                                                              Corn

                                                              1 variety, 3 treatments

                                                              Spectra

                                                              PCA

                                                              OW (single kernels), PW PCA

                                                              LS-SVM, KNN

                                                              Fungus (Aflatoxin A. flavus) damage  detection

                                                              > 91% (KNN)

                                                              Hick peas, green peas, lentils, pinto  beans and kidney beans

                                                              5 different pulses, 2 fungi

                                                              Spectra and image

                                                              PCA

                                                              OW (single kernels), PW PCA

                                                              LDA, QDA

                                                              Fungus (Penicillium commune Thom, C.  and A. flavus Link, J.) damage detection

                                                              96%-100%

                                                              Maize

                                                              4 varieties

                                                              Spectra

                                                              PCA

                                                              OW (single kernels), PW prediction map

                                                              SVM, SVR

                                                              Fungus (Aflatoxin B1) damage detection

                                                              R2 = 0.77

                                                              Maize

                                                              1 variety, 5 treatments

                                                              Spectra

                                                              PCA, FDA

                                                              OW (single kernels), PW PCA

                                                              FDA

                                                              Fungus (Aflatoxin B1) damage detection

                                                              88%

                                                              Maize

                                                              1 variety, 5 treatments

                                                              Spectra

                                                              PCA

                                                              OW (single kernels)

                                                              FDA

                                                              Fungus (Aflatoxin B1) damage detection

                                                              98%

                                                              Maize

                                                              1 variety, 3 treatments

                                                              Spectra

                                                              No

                                                              OW (single kernels), PW prediction map

                                                              PLS-DA

                                                              Fungus (Fusarium) damage detection

                                                              77% (PLS-DA)

                                                              Maize

                                                              1 variety, nine treatments

                                                              Spectra

                                                              PCA, variable importance plots

                                                              OW (single kernels), PW PCA and  prediction map

                                                              PLSR

                                                              Fungus damage detection

                                                              R2 = 0.87

                                                              maize

                                                              1 variety, 2 fungi, 3 treatments

                                                              Spectra

                                                              No

                                                              OW (single kernels)

                                                              discriminant analysis

                                                              Fungus (Toxigenic and atoxigenic A.  flavus) damage detection

                                                              94.40%

                                                              Maize

                                                              12 varieties, 4 fungi

                                                              Spectra

                                                              PCA

                                                              OW (bulk samples), PW PCA

                                                              ANOVA, Fisher’s LSD test

                                                              Fungus (Aspergillus strains) damage  detection

                                                              Fisher’s LSD test

                                                              Oat50

                                                              1 variety, 4 treatments

                                                              Spectra

                                                              PLSR

                                                              OW (single kernels), PW prediction map

                                                              PLSR, PLS-LDA

                                                              Fungus (Fusarium) damage detection

                                                              R2 = 0.8

                                                              Peanut

                                                              1 variety, 2 treatments

                                                              Spectra

                                                              PCA

                                                              OW (single kernels), PW prediction map

                                                              PCA

                                                              Moldy kernel detection

                                                              98.73%

                                                              Peanut

                                                              1 variety, 2 treatments

                                                              Spectra

                                                              ANOVA, NWFE

                                                              OW (single kernels), PW prediction map

                                                              SVM

                                                              Fungus (Aflatoxin) damage detection

                                                              > 94%

                                                              Rice

                                                              1 variety, 6 treatments

                                                              Spectra

                                                              No

                                                              OW (bulk samples)

                                                              SOM, PLSR

                                                              Fungus (Aspergillus) damage detection

                                                              R2 = 0.97

                                                              Watermelon

                                                              1 variety, 2 treatments

                                                              Spectra

                                                              Intermediate PLS (iPLS)

                                                              OW (single kernels) PW prediction map

                                                              PLS-DA, LS-SVM

                                                              Fungus (Cucumber green mottle mosaic  virus) damage detection

                                                              83.3% (LS-SVM)

                                                              Watermelon

                                                              1 variety, 2 treatments

                                                              Spectra

                                                              Intermediate PLS (iPLS)

                                                              OW (single kernels), PW prediction map

                                                              PLS-DA, LS-SVM

                                                              Fungus (Acidovorax citrulli) damage  detection

                                                              > 90%

                                                              Wheat

                                                              4 varieties, 2 fungi

                                                              Spectra

                                                              PCA

                                                              OW (single kernels), PW spectra

                                                              LDA

                                                              Fungus (Fusarium) damage detection

                                                              > 91%

                                                              Wheat

                                                              33 varieties, 3 treatments

                                                              Spectra

                                                              No

                                                              OW (single kernels), PW spectra

                                                              spectral index

                                                              Fungus (Fusarium head blight) damage  detection

                                                              81%

                                                              Wheat

                                                              1 variety, 3 treatments

                                                              Spectra and image

                                                              PCA, STEPDISC

                                                              OW (single kernels)

                                                              LDA

                                                              Fungus (Fusarium) damage detection

                                                              92%

                                                              Wheat

                                                              1 variety, 3 fungi

                                                              Spectra and image

                                                              STEPDISC, GLCM, GLRM, PCA

                                                              OW (single kernels)

                                                              LDA, QDA, MDA

                                                              Fungus (Penicilliumspp., Aspergillus  glaucus group, and Aspergillus niger) damage detection

                                                              > 95%

                                                              Wheat

                                                              3 varieties

                                                              Spectra

                                                              PCA

                                                              OW (bulk, single kernels), PW PCA

                                                              PLS-DA, iPLS-DA

                                                              Fungus (Fusarium) damage detection

                                                              99%

                                                              高光譜成像是一個復(fù)雜的、多學(xué)科的領(lǐng)域,其目的是在不進(jìn)行單調(diào)的樣品制備情況下,同時對多種化學(xué)成分和物理屬性的含量和空間分布進(jìn)行有效和可靠的測量,因此為種子自動分級和缺陷檢測系統(tǒng)的設(shè)計提供了可能。本文概述的各種應(yīng)用表明,在種子分級、活力和活力檢測、缺陷和疾病檢測、清潔度檢測和種子成分測定方面,高光譜成像具有很大的應(yīng)用潛力�?梢灶A(yù)見,采用該技術(shù)的實時種子監(jiān)測系統(tǒng)將在不久的將來滿足現(xiàn)代種子工業(yè)控制和分選系統(tǒng)的需求。

                                                              全文閱讀

                                                              Feng L, Zhu S, Liu F, et al, et al. Hyperspectral imaging for seed quality and safety inspection: a review. Plant Methods, 2019, 15(1): 1-25.

                                                              來源:上海澤泉科技股份有限公司
                                                              聯(lián)系電話:021-32555118
                                                              E-mail:[email protected]

                                                              用戶名: 密碼: 匿名 快速注冊 忘記密碼
                                                              評論只代表網(wǎng)友觀點,不代表本站觀點。 請輸入驗證碼: 8795
                                                              Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:[email protected]