在洞穴中形成的無定形碳酸鈣及其對(duì)洞穴堆積物研究的影響
瀏覽次數(shù):1364 發(fā)布日期:2017-9-6
來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)
摘要
淺褐色沉積物是古氣候研究中最有價(jià)值的大陸構(gòu)造之一,因?yàn)樗鼈兛梢允褂媒^對(duì)測年法進(jìn)行評(píng)估,并且還提供有價(jià)值的氣候替代指標(biāo)。然而,沉積后的礦物學(xué)轉(zhuǎn)化等改變過程可能會(huì)對(duì)其地球化學(xué)數(shù)據(jù)的古氣候應(yīng)用產(chǎn)生顯著的影響。本文介紹了采用掃描和透射電子顯微鏡,X射線衍射和傅里葉變換紅外光譜技術(shù)的創(chuàng)新采樣和測量方案,證明了在-10°C的洞穴中的滴水中的碳酸鹽沉淀含有無定形碳酸鈣(ACC),后來會(huì)轉(zhuǎn)變?yōu)榧{米晶方解石。還通過分餾法測定了方解石,ACC和水中穩(wěn)定的氧同位素,證明ACC相對(duì)于方解石為 18O-耗盡的(> 2.4±0.8‰)。這反過來又對(duì)于基于流體的流體包裹體研究具有嚴(yán)重的后果,因?yàn)锳CC向方解石的閉合系統(tǒng)轉(zhuǎn)化可能會(huì)導(dǎo)致流體夾雜水中的負(fù)氧同位素偏移,導(dǎo)致原始組成的變差。 ACC形成增加了淺褐色沉積物對(duì)變化的敏感性,因?yàn)樗c外部解決方案的交互可能導(dǎo)致原始代理信號(hào)的部分丟失。因此本文建議在研究的淺褐色沉積物位置對(duì)新鮮沉淀碳酸鹽進(jìn)行礦物學(xué)分析,以確定ACC形成的潛在影響。
Formation of amorphous calcium carbonate in caves and its implications for speleothem research
Abstract
Speleothem deposits are among the most valuable continental formations in paleoclimate research, as they can be dated using absolute dating methods, and they also provide valuable climate proxies. However, alteration processes such as post-depositional mineralogical transformations can significantly influence the paleoclimatic application of their geochemical data. An innovative sampling and measurement protocol combined with scanning and transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy is presented, demonstrating that carbonate precipitating from drip water in caves at ~10 °C contains amorphous calcium carbonate (ACC) that later transforms to nanocrystalline calcite. Stable oxygen isotope fractionations among calcite, ACC and water were also determined, proving that ACC is 18O-depleted (by >2.4 ± 0.8‰) relative to calcite. This, in turn, has serious consequences for speleothem-based fluid inclusion research as closed system transformation of ACC to calcite may induce a negative oxygen isotope shift in fluid inclusion water, resulting in deterioration of the original compositions. ACC formation increases the speleothems’ sensitivity to alteration as its interaction with external solutions may result in the partial loss of original proxy signals. Mineralogical analysis of freshly precipitating carbonate at the studied speleothem site is suggested in order to determine the potential influence of ACC formation.